
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:403–412 (DOI: 10.1002/�d.296)

Schur complement preconditioners for the
Navier–Stokes equations

D. Loghin∗;† and A. J. Wathen

Oxford University Numerical Analysis Group; Parks Road; Oxford; OX1 3QD; UK

SUMMARY

Mixed �nite element formulations of �uid �ow problems lead to large systems of equations of saddle-
point type for which iterative solution methods are mandatory for reasons of e�ciency. A successful
approach in the design of solution methods takes into account the structure of the problem; in par-
ticular, it is well-known that an e�cient solution can be obtained if the associated Schur complement
problem can be solved e�ciently and robustly. In this work we present a preconditioner for the Schur
complement for the Oseen problem which was introduced in Kay and Loghin (Technical Report 99=06,
Oxford University Computing Laboratory, 1999). We show that the spectrum of the preconditioned
system is independent of the mesh parameter; moreover, we demonstrate that the number of GMRES
iterations grows like the square-root of the Reynolds number. We also present convergence results for
the Schur complement of the Jacobian matrix for the Navier–Stokes operator which exhibit the same
mesh independence property and similar growth with the Reynolds number. Copyright ? 2002 John
Wiley & Sons, Ltd.

1. THE SCHUR COMPLEMENT APPROACH: AN OVERVIEW

Let � ⊂ R2 be a bounded domain with boundary �. Consider the Navier–Stokes equations in
primitive variables with the following boundary conditions:

ut − ��u+ (u · ∇)u+∇p= f in �× (0; T ) (1a)

div u=0 in �× (0; T ) (1b)

u(x; t) = u∗(x; t) on �D× (0; T ) (1c)

n · �=0 on �N × (0; T ) (1d)

with initial condition u(x; 0)=u0(x) in �. Here n is the outward normal to � and �= −pI+
2��(u) is the Cauchy stress tensor, with �= 1

2(∇u+(∇u)t); the symmetric part of the velocity
gradient.
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A fully-implicit time discretization scheme (e.g. a �-method) coupled with standard lin-
earizations of (1) leads to problems of the form:

−��u+ (b · ∇)u+ �(u · ∇)b+ �u+∇p= f in � (2a)

div u=0 in � (2b)

u= u∗ on �D (2c)

n · �=0 on �N (2d)

where b is a divergence-free vector �eld which is the solution computed at the previous step.
We note that the choice �=0 de�nes the Picard linearization, whereas �=1 corresponds to
the Newton method. While the former is computationally cheap, the rate of convergence is
linear and in practice the method seems to work for larger values of �. On the other hand,
Newton’s method with a quadratic rate of convergence is more expensive and requires a good
initial guess; however, the method works for regimes where �� 1.
In either case, a stabilized mixed �nite element discretization of (2) leads to a system of

linear equations of the form:

Kx=K

(
xu
xp

)
=

(
F + �M Bt1
B2 −C

)(
xu
xp

)
=

(
fu
fp

)
(3)

where F +�M is a vector ‘advection–di�usion–reaction’ operator, Bt1; B2 are discrete gradient
and divergence operators including stabilization terms and C is a stabilization matrix. We note
here that stabilization is not necessary if � is large and the choice of �nite element spaces
satis�es the well-known inf–sup condition of Babu�ska and Brezzi; in this case B1=B2.
Since the size of K is usually large, we restrict our attention to iterative solution methods

for system (3). In particular, we note here two major classes of solution methods:

(i) multigrid methods;
(ii) Krylov subspace methods.

Both methods have been shown to be successful solvers for various choices of discretizations
of (1) as well as for various ranges of the viscosity parameter �; we refer the reader to
References [1, 2] for a comparison of some of these methods.
In this work we report on the performance of a preconditioning technique employed in

conjunction with a Krylov method. However, the resulting preconditioner could also be used
in certain multigrid iterations, e.g. Reference [3], which employ a pressure solution method
(see below).
In general, the solution of (3) is usually sought in two di�erent ways:

• A global approach, where the solution x is computed iteratively.
A Krylov subspace approach employs an iterative solver such as GMRES or BiCGStab with
right or left preconditioners given, respectively, by

PR=

(
F + �M Bt1
O −Ŝ

)
; PL=

(
F + �M O

B2 −Ŝ

)
(4)
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where Ŝ is an approximation to the pressure Schur complement S=C + B2(F + �M)−1Bt1.
We note here that if Ŝ=S convergence is guaranteed in at most 3 iterations [4].

• A pressure solution method, where xu is eliminated from (3) and then the solution xp
is computed iteratively; xu is then found in terms of xp.

This approach leads to a system for xp of the form:

Sxp=B2(F + �M)−1fu − fp (5)

which, when solved iteratively, also needs an approximation to S.

It is clear that both approaches need to approximate (i) the Schur complement S and (ii)
the vector ‘advection–di�usion–reaction’ operator F + �M . Assuming the latter task can be
e�ectively achieved for �=0 we present a useful approximation of the Schur complement
S for this case. The resulting preconditioner will then be tested for the case �=1. In the
following �=0 unless otherwise stated.
We �rst note that for the Stokes problem a useful approximation of the Schur complement

was introduced in Reference [5]

Ŝ=(�M−1
p + �A−1

p )−1 (6)

where Mp and Ap are the projections of the identity and a Neumann Laplacian onto the
pressure space. We note also that for steady-state Stokes (6) becomes Ŝ=Mp=�, which was
analysed in References [6, 7].
Naturally, the above choices of Ŝ were considered for the Navier–Stokes equations and in

particular for the Oseen problem which corresponds to (2) with �=0. Results are reported
in Reference [8] for the time-dependent problem and in References [7, 9] for steady-state
problems and for stable formulations. We also note here the multigrid approach in Reference
[3] which requires an approximation of the Schur complement; the approach in Reference [3]
uses among other choices the preconditioner (6) to solve the pressure Schur complement prob-
lem (5). Analytic and numerical results in the above references show that the preconditioned
system has a spectrum independent of the mesh parameter and conclude that convergence
is mesh-independent. However, the viscosity parameter � is also an important parameter and
it is desirable that convergence be independent of or mildly dependent on � as �→ 0. For
example, the choice (6) with �=0 yields a number of iterations which was shown to increase
linearly with 1=� [7]; moreover, numerical results in References [7, 9] seem to indicate that
the preconditioner is useful for a limited range of �. That the convergence rate deteriorates
as �→ 0 is a somewhat expected result since the non-normality of S cannot be matched by
symmetric preconditioner (6).
Alternative preconditioners which tried to deal with the non-symmetry inherent in the Schur

complement were proposed in References [9, 10]. Elman suggested the approximation

(Ŝ)−1=(BBt)−1BFBt(BBt)−1

for stable formulations for which B1=B2=B. This choice reduces the dependence on � to �−1=2

but introduces an h−1 dependence for the number of iterations. Moreover, though e�ciently
applied to the MAC �nite di�erence scheme, the implementation for �nite elements requires
a further e�cient approximation for (BBt)−1.
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The choice of preconditioner we present in this paper was introduced in Reference [10]
and is given by

(Ŝ)−1=M−1
p FpA−1

p (7)

with Mp; Ap de�ned as above and Fp the projection onto the pressure �nite element space of
the velocity operator of Equation (2a), −�� + b · ∇ + �. Note that when b=0 we recover
the preconditioner (6). The numerical results presented in Reference [10] together with those
in Reference [11] show no mesh dependence and a dependence on � of order �−1=2 or less.
The analysis in Reference [12] con�rms and re�nes these results. In this paper we review
these results and demonstrate that the number of iterations is of order O(R1=2) where R is the
Reynolds number.

2. CONVERGENCE ANALYSIS

A mixed formulation of problem (2) with �=0 involves choosing appropriate spaces for the
velocity and pressure

V ⊂ [H 1
E(�)]

2={�∈[H 1(�)]2: � | �D=0}; P ⊂ L20(�)={p∈L2(�): 〈p; 1〉=0}
and results in the following weak formulation:

Given f∈[L2(�)]2; �nd (u; p)∈H=V×P such that
B(u; p; v; q)=F(v; q) ∀(v; q)∈H (8)

where

B(w; r; v; q)=�〈∇w;∇v〉+ 〈b · ∇w+ �w; v〉 − 〈r; div v〉 − 〈q; divw〉; F(v; q)=〈f ; v〉 (9)

Existence and uniqueness are guaranteed provided the bilinear form B(·; ·; ·; ·) is coercive and
continuous with respect to some suitable norm on H . Various discrete formulations which
satisfy these requirements can be found in the literature; we employ here the stabilized for-
mulation of Franca and Frey [13]

Find (u; p)∈Vh×Ph=Hh ⊂ H such that

B�(u; p; v; q)=F�(v; q) ∀(v; q)∈Hh (10)

where

B�(w; r; v; q) = B(w; r; v; q) + �〈divw; div v〉

+
∑
T∈Th

�T 〈−��w+ b · ∇w+ �w+∇r; ��v+ b · ∇v −∇q〉T

F�(v; q) = (f ; v) +
∑
T∈Th

�T 〈f ; ��v+ b · ∇v −∇q〉T
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Here �T=O(h2T =�) is a mesh function de�ned on the computational domain �h=
⋃
T , where

T are simplices of diameter hT . The above choice of �nite element spaces produces the matrix
problem (3) with �=0 and the blocks de�ned via

〈Fw; v〉=a(w; v) = �〈∇w;∇v〉+ 〈b · ∇w; v〉+ �〈w; v〉+ �〈div u; div v〉
+
∑
T∈Th

�T 〈−��w+ b · ∇w+ �w; ��v+ b · ∇v〉T (11)

〈B1v; r〉=−〈div v; r〉 − ∑
T∈Th

�T 〈−��v − b · ∇v;∇r〉T (12)

〈B2w; q〉=−〈divw; q〉 − ∑
T∈Th

�T 〈−��w+ b · ∇w+ �w;∇q〉T (13)

〈Cr; q〉=− ∑
T∈Th

�T 〈∇r;∇q〉T (14)

for w; v∈Vh; r; q∈Ph. For the above choice of �nite element spaces our preconditioner is
de�ned as in (7) with Ap; Fp;Mp de�ned via

〈Fpq; r〉=a(q; r); 〈Mpq; r〉=〈q; r〉; 〈Apq; r〉=〈∇q;∇r〉; q; r∈Ph

The following result which can be found in Reference [12] provides mesh-independent
bounds on the spectrum of the preconditioned Schur complement for the Oseen problem.

Theorem 2.1
Let S=C + B2F−1Bt1 denote the Schur complement associated with the Oseen problem and
let Ŝ be de�ned as in (7), with Ap; Fp;Mp de�ned as above. Then there exist constants C1; C2
such that

C1
�(�+ �)
b2

6|�i(SŜ−1p )|6 C2
�+ b
�

where b=‖b‖.
Note that for steady problems (�=0) the spectrum lies in an annulus in the complex plane

with outer radius R=‖b‖=� and inner radius R−2.
One can use this result to infer the mesh-independence of iterative methods such as GMRES.
The residuals rk in the GMRES iteration applied to (5) satisfy [14]

‖rk‖
‖r0‖ 6

L(��)
2	�

min
pk (0)=1

max
z∈	�(SŜ−1)

|pk(z)| (15)

where pk denotes a polynomial of degree k and the set 	�(M) := {z∈C: ‖(zI−M)−1‖¿�−1}
is the �-pseudo-spectrum with contour length L(��) of a matrix M . Given the bounds of
Theorem 2.1, one would expect the right-hand side in the above inequality to be independent of
the mesh parameter, i.e. that the pseudo-spectrum 	� does not depend on the mesh parameter.
Experiments suggest that this is indeed the case (see Reference [12]). Thus, for the pressure
method (5), convergence of GMRES preconditioned with right preconditioner PR de�ned in
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(4) is mesh-independent. The result for the global method (3) preconditioned by PR follows
similarly after noting that 	(KP−1

R )=	(SŜ−1) ∪ {1}.
The above results do not provide any insight into the convergence of GMRES with respect

to the other parameters in the problem: �; ‖b‖; �. For example, one could estimate �� to be
of order R from the result of Theorem 2.1. However, the minimax problem in the above
corollary does not have in general a known solution; see Reference [11] for a more detailed
discussion. One can still get an insight into the convergence behaviour of GMRES: numerical
experiments indicate that the number of iterations grows like R1=2 (see next section) and seems
to be virtually independent of the choice of �. We expect to investigate this issue more closely
in future work.

3. NUMERICAL RESULTS

In this section we consider the performance of the GMRES method applied to the global
solution approach with right preconditioner PR as in (4). We limit our experiments to the
steady-state case, which seems to be the most trying for our preconditioning approach.
The factorization

P−1
R =

(
(F + �M)−1

I

)(
I Bt1

−I

)(
I

Ŝ−1

)

indicates that we need to invert F + �M; Ap and Mp. However, these inverses do not have
to be implemented exactly. The �rst is achieved with 5 iterations of GMRES with ILU
preconditioning, the second with 3 iterations of the conjugate gradient method (CG) with
ILU and the last with 3 iterations of CG with diagonal preconditioning. We note here that
inverting F is potentially a computationally more intensive task: however, for the Picard
iteration the matrix F is an advection–di�usion operator for which ILU appears to be a useful
preconditioner.
We present results for three steady test problems, for the Q2Q1 �nite element discretization:

(i) the regularized driven cavity;
(ii) �ow in a box;
(iii) �ow past a backward facing step.

The �rst and third problems are standard; the second is �ow in the unit box de�ned by the
following data (cf. (1))

�1 = {(x; y) ∈ �x: 0:25¡x¡0:75}; �N={(x; y) ∈ �x: 0:25¡y¡0:75}
u∗ | �1 = (0;−16x2 + 16x − 3); u∗ | �D\�1 =(0; 0)

We employed preconditioner PR for problem (3) for each of the cases �=0 and 1. Writing
(1) as F(w)=0, where w=(u; p), the GMRES stopping criterion at the nth non-linear (outer)
iteration was in each case ‖rk‖=‖F(wn)‖6 10−2. The stopping tolerance for the outer iteration
was 10−6.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:403–412
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Figure 1. Loglog plot of the number of GMRES iterations versus ‖u‖=�: (a) Cavity problem,
(b) box problem and (c) step problem.

3.1. The Picard iteration: �=0

The results for the preconditioned Picard iteration are shown in Figures 1 and 2. The number
of GMRES iterations shown represents the average over the number of non-linear (outer)
iterations.
The performance of our preconditioner is indeed mesh-independent as predicted by The-

orem 2.1 and the bound (15). Moreover, the dependence on the parameters seems to be
completely described by the parameter R=‖u‖=� which appears in the bounds of Theorem
2.1. More precisely, the numerics suggest that the number of iterations grows like R1=2. We
note here that for �xed �; ‖u‖ varies from problem to problem. This suggests indeed that �
is not su�cient to characterize convergence of our iteration.

3.2. The Newton iteration: �=1

The preconditioning technique described above was also successfully applied to the Jacobian
matrix that arises in a Newton or Newton-type iteration. We chose to exhibit the dependence
on R by implementing a continuation method, the Euler–Newton algorithm (see Reference

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:403–412
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Figure 2. Loglog plot of the number of GMRES iterations versus ‖u‖=�: a comparison for each mesh:
(a) h=1=16; (b) h=1=32; (c) h=1=64.

[12] for details). This is essentially a predictor–corrector method stepping forward in �−1

with the Newton method acting as a corrector. The results are shown in Figure 3. Again we
see the same mesh-independence, and roughly the same dependence on R. The jaggedness of
the plots is due to our stepping strategy and choice of tolerances for the predictor (10−6),
corrector (10−3) and GMRES algorithm. However, we do not expect to see an improvement
with respect to R should these parameters be altered.

4. CONCLUSION

We presented a preconditioning technique for the linear system arising from the discretization
of the Navier–Stokes equations. The algorithm is robust with respect to method of discretiza-
tion, mesh parameter, time-discretization (see Reference [12]). The implementation is simple
and modular: the main building blocks are an advection–di�usion–reaction solver and a Neu-
mann Laplacian solver, which are available with most commercial software packages. The
convergence is analysed in References [11, 12] and it is believed to be well-understood for
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Figure 3. Loglog plot of the number of GMRES iterations versus ‖u‖=�: (a) Cavity problem, (b) box
problem and (c) step problem.

the Picard method. We expect future work to validate the results presented for the Newton
approach.

REFERENCES

1. Elman HC. Multigrid and Krylov subspace methods for the discrete Stokes equations. International Journal
for Numerical Methods in Fluids 1996; 22:755–770.

2. Zeng S, Vuik C, Wesseling P. Numerical solution of the incompressible Navier–Stokes equations by Krylov
subspace and multigrid methods. Advances in Computers and Mathematics 1995; 4(1–2):27–49.

3. Turek S. E�cient Solvers for Incompressible Flow Problems. Springer: Berlin, 1999.
4. Murphy MF, Golub GH, Wathen AJ. A note on preconditioning for inde�nite linear systems. SIAM Journal
on Scienti�c Computing 2000; 21:1969–1972.

5. Cahouet J, Chabard JP. Some fast 3D �nite element solvers for the generalized Stokes problem. International
Journal for Numerical Methods in Fluids 1988; 8(8):869–895.

6. Silvester DJ, Wathen AJ. Fast iterative solution of stabilised Stokes systems. 2. Using general block
preconditioners. SIAM Journal on Numerical Analysis 1994; 31(5):1352–1367.

7. Klawonn A, Starke G. Block triangular preconditioners for non-symmetric saddle-point problems: �eld-of-values
analysis. Numerische Mathematik 1999; 81(4):577–594.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:403–412



412 D. LOGHIN AND A. J. WATHEN

8. Bramble JH, Pasciak JE. Iterative techniques for time dependent Stokes problems. Computers and Mathematics
with Applications 1997; 33(1–2):13–30.

9. Elman HC. Preconditioning for the steady-state Navier–Stokes equations with low viscosity. SIAM Journal on
Scienti�c Computing 1999; 20(4):1299–1316.

10. Kay D, Loghin D. A Green’s function preconditioner for the steady-state Navier–Stokes equations. Technical
Report 99=06, Oxford University Computing Laboratory, 1999.

11. Elman HC, Silvester DJ, Wathen AJ. Performance and analysis of saddle point preconditioners for the discrete
steady-state Navier–Stokes equations. Technical Report UMCP-CSD:CS-TR-4164, Department of Computer
Science, Maryland, 2000.

12. Loghin D. Analysis of preconditioned Picard iterations for the Navier–Stokes equations. Numerische
Mathematik, 2001, submitted.

13. Franca LP, Frey SL. Stabilized �nite element methods: II. The incompressible Navier–Stokes equations.
Computational Methods and Application in Mechanical Engineering 1992; 99:209–233.

14. Trefethen LN. Approximation theory and numerical linear algebra. In Algorithms for approximation II. Mason
JC, Cox MG (eds). Chapman & Hall: London, 1990.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:403–412


